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Abstract
By taking into account the chemical-potential fluctuations, we propose a
generalization of the formalism elaborated by R V Chepulskii and V N Bugaev
(1998 J. Phys.: Condens. Matter 10 7309), which is based on the use
of the thermodynamic fluctuation method in the first order of a modified
thermodynamic perturbation theory under the choice of the inverse effective
number of atoms interacting with one fixed atom as a small parameter of
expansion. As a result, a new approximation for calculation of the short-
range order parameters in the disordered (i.e. without the long-range order)
state of alloys is obtained. Moreover, the rigorous equation for determination
of the chemical potentials is derived to replace the heuristic one obtained
earlier. Both analytical and numerical comparison of the results of old and new
approximations is performed. By comparison with the results of the Monte
Carlo simulation, the higher numerical accuracy of the new approximation is
demonstrated. The importance of taking into account the chemical-potential
fluctuations is shown at low temperatures.

In [1–3], by use of the thermodynamic fluctuation method [4], in the first order of a modified
thermodynamic perturbation theory [5, 6] under the choice of the inverse effective number
of atoms interacting with one fixed atom as a small parameter of expansion [7], the so-
called ring approximation was elaborated for the calculation of the short-range order (SRO)
in disordered (i.e. without the long-range order) alloys. However, the chemical-potential
fluctuations corresponding to the fluctuations of the site concentrations of atoms were assumed
to be small and were not taken into account in the developed formalism. Besides, the equation
for determination of the chemical potentials was derived heuristically and (as shown below)
is approximate. In this letter, the corresponding formalism is generalized by taking into
account the chemical-potential fluctuations. As a result, the modified expression for the SRO
parameters and the rigorous equation for the determination of the chemical potentials are
derived.
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In general, in the framework of the lattice gas model, the Hamiltonian H of a two-
component A–B disordered alloy with a Bravais crystal lattice can be written in the following
form [8]:

H = Nv0 +�
∑
R

CR + 1
2

∑
R1,R2

VR1−R2CR1CR2 , (1)

taking into account the atomic interactions of less than or equal to second order and of arbitrary
radius of action (order of interactions means the number of interacting atoms). In (1) N is
the number of sites of the crystal lattice, v0 is the energy per site of the alloy in which all N
sites are occupied by B-type atoms, � and VR1−R2 are the unary and pair mixing potentials,
respectively,

CR =
{

1, if the site R is occupied by an A-type atom

0, otherwise,
(2)

and the summations on the radius-vectors R, R1 and R2 are carried over all N sites of the
crystal lattice.

Taking into account the chemical-potential fluctuations, the grand partition function � of
the alloy in question

� =
∑
{CR}

exp[−(kBT )
−1(H − µANA − µBNB)] (3)

can be presented as follows:

� =
∑
{CR}

exp

{
− (kBT )

−1

[
H −

∑
R

µA
RCR −

∑
R

µB
R(1 − CR)

]}
. (4)

In equations (3) and (4) µA
R, NA and µB

R, NB are the chemical potentials and the total numbers
of A- and B-type atoms, respectively, T is the absolute temperature, kB is the Boltzmann
constant and the summation on {CR} is carried over all possible atomic configurations. In
the determination of (4), the relationships NA + NB = N and NA = ∑

R CR were used.
Substituting (1) into (4) and using the equality [CR]n = CR (n is a positive integer), one can
write

� = �0

∑
{CR}

exp

[
−(2kBT )

−1
∑

R1,R2

(VR1−R2 + µR1δR1,R2)CR1CR2

]
, (5)

where δR1,R2 is the Kronecker delta,

�0 = exp

[
−(kBT )

−1
∑
R

(v0 − µB
R)

]
, µR = 2(�− µA

R + µB
R). (6)

Going from the partition function � in (5) to the grand thermodynamic potential � =
−kBT ln� in the same way as from the corresponding equations (2.4) to (5.2) in [2], and then
to the free energy F

F = � +
∑
R

[
µA

RPR + µB
R(1 − PR)

]
, (7)

we arrive at the following expression:

F = Nv0 +
∑
R

[
�PR − µR

2
PR(1 − PR)

]
+

1

2

∑
R1,R2

VR1−R2PR1PR2

+ kBT
∑
R

[PR lnPR + (1 − PR) ln(1 − PR)]

− kBT

2

∞∑
n=1

1

n

∑
R1,R2,...,Rn

fR1−R2fR2−R3 . . . fRn−R1 . (8)
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Equation (8) was obtained within the ring approximation, i.e. taking into account the
contributions from the terms corresponding to the first and second powers of Brout’s parameter
z−1, where z is the effective number of atoms interacting with one fixed atom [7]. In equation (8)

PR = 〈CR〉 (9)

is the probability to find an A-type atom at the site R, the sign 〈· · ·〉 means the statistical
average over all states with given values of the long-range order (LRO) parameters,

fRl−Rm√
PRl
(1 − PRl

)
√
PRm

(1 − PRm
)

= (VRl−Rm
+ µRl

δRl ,Rm
)

kBT
. (10)

The equations for determination of the chemical potentials are ∂�/∂µA
R = −PR and

∂�/∂µB
R = −(1 − PR), which in terms of the free energy can be written as

∂F/∂µR = 0. (11)

The free energy functional derived above has the following form:

F = F [PR, µR(PR)]. (12)

Within the thermodynamic fluctuation method [4], the SRO is found through the calculation
of the free energy variation of the second order with respect to the fluctuations δPR. However,
in [2], the dependence µR(PR) was assumed to be small and was not taken into account in
such calculation. From (12) it follows that the expression for the free energy variation δF up
to second order with respect to the fluctuations δPR should be

δF =
∑
R

[
∂F

∂PR

δPR +
∂F

∂µR

δµR

]
+

1

2

∑
R1,R2

[
∂2F

∂PR1∂PR2

δPR1δPR2

+
2∂2F

∂PR1∂µR2

δPR1δµR2 +
∂2F

∂µR1∂µR2

δµR1δµR2

]
. (13)

From (11), by taking the first derivative with respect to PR, one can write that

d

dPR1

∂F

∂µR2

= ∂2F

∂PR1∂µR2

+
∑
R′

∂2F

∂µR′∂µR2

dµR′

dPR1

= 0. (14)

Besides, for the variation δµR, we generally have up to second order with respect to the
fluctuations δPR

δµR =
∑
R1

∂µR

∂PR1

δPR1 +
1

2

∑
R1,R2

∂2µR

∂PR1∂PR2

δPR1δPR2 . (15)

Thus, from (13), taking into account (11), (14) and (15), we obtain up to second order with
respect to the fluctuations δPR

δF = 1

2

∑
R1,R2

[
∂2F

∂PR1∂PR2

+
∑
R′

∂2F

∂PR1∂µR′

dµR′

dPR2

]
δPR1δPR2 . (16)

Note that the term in δF which is linear with respect to δPR is equal to zero, because the
fluctuations are considered in the disordered state, which is supposed to be thermodynamically
stable at the considered external conditions. In such a disordered state, which is investigated
in this letter, we should also put

µA
R → µA, µB

R → µB, µR → µ, PR → c = NA/N, (17)

where c is the concentration of A-type atoms in the alloy. Below, the transformation (17) will
be performed in all coefficients of series expansion in terms of the fluctuations and in all final
expressions corresponding to the disordered state.
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Let us define the Fourier transforms δµk and δPk of the fluctuations δµR and δPR,
respectively, as

δµR =
∑

k

δµk exp(−ikR), δPR =
∑

k

δPk exp(−ikR). (18)

From (11) using (8), firstly, one can derive the following relationship:

c(1 − c)
kBT

δµk = 1 − 2c

c(1 − c)
(

1 − 1

Ik

)
δPk (19)

where

Ik = N−1
∑

q

[Ak−qAq]−1, Ak = 1 +
c(1 − c)
kBT

(Ṽk + µ), (20)

Ṽk is the Fourier transform of the pair mixing potential

Ṽk =
∑
R

VR exp(−ikR). (21)

Secondly, in the same way, one can also obtain the following equation for the determinationµ:

N−1
∑

k

[Ak]−1 = 1. (22)

From (16), using (8), (11), (19) and (22), we obtain

δF = NkBT

2

∑
k

|δPk|2
c(1 − c)β

−1
k , (23)

where

β−1
k = Ak +

(1 − 2c)2

2c(1 − c)
(

1

Ik
− 1

)
. (24)

Thus, from equation (23) it follows that, within the ring approximation, in the context of
the thermodynamic fluctuation method, the Fourier transform αk of the SRO parameters αR

αR1−R2 = (〈CR1CR2〉|PR=c − c2)[c(1 − c)]−1,

αk =
∑
R

αR exp(−ikR), αR = N−1
∑

k

αk exp(ikR) (25)

is determined (see e.g. equation (7.6) in [2]) as

αk = 1 −N−1
∑

q

βq + βk, (26)

where βk is defined in (24). Note that the term Ak in (24) corresponds to the spherical model
(SM) approximation [7] and the other terms in (24) are just the corrections within the ring
approximation.

Thus, within the considered ring approximation, taking into account the chemical-potential
fluctuations, one can calculate the SRO Fourier transform αk and then (by integration over
the Brillouin zone—see equation (25)) the SRO parameters αR. To do so, one has to use
equation (26) with βk from (24), where Ik and Ak are determined in (20). The quantity µ
(see (20)) is determined from equation (22).

To compare the expression (26) with the corresponding expression for αk derived in [2]
(section 8), let us write the latter in such a form (see e.g. equation (1) in [10])

α−1
k = Ak +

(1 − 2c)2

2c(1 − c) (1 − Ik) +
1 − 3c(1 − c)
c(1 − c)

(
N−1

∑
k

[Ak]−1 − 1

)
, (27)
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Figure 1. Evolution of the SRO parameters αR for the first two coordination shells of the fcc crystal
lattice on the reduced temperature obtained in the framework of both ‘new’ (26) and ‘old’ (27)
ring approximations as well as calculated by Monte Carlo (MC) simulations [3], within the SM
approximation [7] and by the γ -expansion method (GEM) [9] at c = 0.10, V1 > 0, Vs = 0
(s > 1). l,m and n are the Cartesian coordinates of vector R in a/2 units, where a is the fcc lattice
parameter.

where the quantities Ik and Ak are the same as in (20) but µ is to be found from the equation

N−1
∑

k

αk = 1 (28)

rather than from (22).
It should be emphasized that, in contrast to the heuristical derivation of (28) in [2], the

new equation (22) for the determination µ was derived rigorously from the general grand
canonical ensemble formalism. In fact, equation (28) was derived in [2] (see equation (8.3)
there) in analogy with the SM approximation to satisfy the sum rule, which is equation (28)
itself. However, one can see that equation (26) satisfies the sum rule (28) for any function βk.
Note also that (22) is much simpler than (28) because in (22) there is only one summation over
the Brillouin zone. Besides, it was revealed that in the case of equation (22) there is no such
problem as the choice of the ‘physically adequate solution’ for µ (see section 4 in [3]).

For the subsequent comparison of the two approximations, it is useful to present (24) in
the following equivalent form:

β−1
k = Ak +

(1 − 2c)2

2c(1 − c) (1 − Ik)
(

1 +
1 − Ik
Ik

)
. (29)
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Using in equation (27) the rigorous equality (22) and then comparing (27) and (29), one can
see that the difference between them lies in the term proportional to (1 − Ik)2. Note that this
term appears just due to taking account of the fluctuations of the chemical potential.

From (20), it follows that Ik → 1 at T → ∞. On the other hand, because the difference
between the results of the ‘old’ ring (without the chemical-potential fluctuations) and SM
approximations is proportional to (1 − Ik) (see (27)) and can be large in the vicinity of the
order–disorder phase transformation (see figures 4–11 in [3]), one can expect that the quantity
(1−Ik)2 and thus the contribution from the chemical-potential fluctuations can be considerable
when the alloy temperature approaches the critical temperature of the order–disorder phase
transformation.

To test the validity of the last statement, let us calculate the SRO parameters for the first
two coordination shells of face-centred cubic (fcc) crystal lattice in the case of c = 0.10,
V1 > 0, Vs = 0 (s > 1) (Vs is the pair mixing potential for the sth coordination shell) within
both the ‘new’ (26) and the ‘old’ (27) ring approximations. We chose such a case because
here the difference between the ‘old’ ring and SM approximations is comparatively large (see
figure 6 in [3]). The results are presented in figure 1. In this figure, we have also included the
corresponding results obtained from MC simulations [3] as well as calculated within the SM
approximation [7] and by the γ -expansion method [9].

From figure 1, one can see that indeed the difference between the ‘old’ and ‘new’ ring
approximations (i.e. with and without taking into account the chemical-potential fluctuations)
is considerable at low temperatures and so is the contribution from the chemical-potential
fluctuations. Accepting the MC simulation results as a standard, we find also that the numerical
accuracy of the approximation (26) derived in this letter is highest among all the approximations
considered.

In conclusion, it should be noted that the zero value of the function β−1
k determines the

critical temperature of the instability of the disordered state (see equation (23)). Elsewhere,
in a paper devoted to phase diagrams calculation within the ring approximation [11], it is
shown that the neglect of the chemical-potential fluctuations can erroneously make the value
of such a critical temperature be even more then the temperature of the order–disorder phase
transformation. Thus, taking into account the chemical-potential fluctuations is also important
for a correct evaluation of the alloy phase diagram.
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